Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 46(2): 253-261, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236352

RESUMO

BACKGROUND: Interactions of plants with biotic stress factors including bacteria, fungi, and viruses have been extensively investigated to date. Plasmodiophora brassicae, a protist pathogen, causes clubroot disease in Cruciferae plants. Infection of Chinese cabbage (Brassica rapa) plants with P. brassica results in the formation of root galls, which inhibits the roots from absorbing soil nutrients and water. Sugar, the major source of carbon for all living organisms including pathogens and host plants, plays an important role in plant growth and development. OBJECTIVE: To explore the roles of BrSWEET2, BrSWEET13, and BrSWEET14 in P. brassicae resistance, Arabidopsis thaliana T-DNA knockout mutants sweet2, sweet13, and sweet14 were employed. METHODS: To isolate total RNA from the collected root nodules, the root tissues washed several times with running water and frozen tissues with liquid nitrogen. Total RNA was extracted using the Spectrum™ Plant Total RNA Kit (SIGMA) and cDNA was synthesized in a 20 µl reaction volume using the ReverTra Ace-α-® kit (TOYOBO). Real-time PCR was performed in a 10 µl reaction volume containing 1 µl of template DNA, 1 µl of forward primer, 1 µl of reverse primer, 5 µl of 2× iQTM SYBR® Green Supermix (BioRad), and 2 µl of sterile distilled water. The SWEET genes were genotyped using BioFACT™ 2× TaqBasic PCR Master Mix 2. RESULTS: Both sweet2 and sweet14 showed strong resistance to P. brassicae compared with wild-type Arabidopsis and Chinese cabbage plants and sweet13 mutant plants. Pathogenicity assays indicated that the SWEET2 gene plays an important role in clubroot disease resistance in higher plants.


Assuntos
Brassica rapa , Brassica , Plasmodioforídeos , Brassica rapa/genética , Plasmodioforídeos/genética , Brassica/genética , Água , RNA
2.
Genes Genomics ; 44(12): 1477-1485, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053485

RESUMO

BACKGROUND: Plant growth and development are complex processes modulated by numerous genes, transcription factors, hormones, and peptides. Several reports implicate the membrane-localized Catharanthus roseus receptor-like kinase1 (CrRLK1L) protein, FERONIA (FER), involved in plant development. However, protein targets of FER remain poorly characterized. OBJECTIVE: FER recombinant proteins were analyzed, and FER-interacting proteins were identified, to better understand the function of the Arabidopsis thaliana FER (AtFER) gene in plant development. METHODS: AtFER-interacting proteins were identified through Yeast-Two Hybrid (Y2H) and validated by bimolecular fluorescence complementation (BiFC). Autophosphorylation activity was evaluated in AtFER site-directed and deletion mutants. RESULTS: AtFER cytoplasmic kinase domain (Flag-FER-CD) is autophosphorylated at the Thr residue (s), with T559 and T664 as important sites for AtFER kinase activity. In addition, the carboxy terminal region is essential for AtFER kinase activity. Y2H identified an Armadillo (ARM)-repeat protein (At4g16490) with tandem copies of a degenerate protein sequence motif, a U-BOX 9 (PUB9, At3g07360), IQ-DOMAIN 7 (IQD7, At1g17480), and heteroglycan glucosidase 1 (HGL1, At3g23640) as AtFER-interacting proteins. BiFC confirmed the in vivo interactions between these four proteins and AtFER in tobacco (Nicotiana benthamiana) leaf transient expression assays. The RAPID ALKALINIZATION FACTOR1 (RALF1) peptide, which is a FER ligand, induced the expression of genes encoding the four AtFER-interacting proteins. CONCLUSION: The AtFER-interacting proteins identified in this study are likely involved in FER-mediated intracellular signaling pathways that are essential in plant growth and development, and possibly plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Fosforilação
3.
Genes Genomics ; 44(7): 833-841, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598220

RESUMO

BACKGROUND: Brassinosteroids (BRs), a group of plant growth hormones, control biomass accumulation and biotic and abiotic stress tolerance, and therefore are highly relevant to agriculture. BRs bind to the BR receptor protein, brassinosteroid insensitive 1 (BRI1), which is classified as a serine/threonine (Ser/Thr) protein kinase. Recently, we reported that BRI1 acts as a dual-specificity kinase both in vitro and in vivo by undergoing autophosphorylation at tyrosine (Tyr) residues. OBJECTIVE: In this study, we characterized the increased leaf growth and early flowering phenotypes of transgenic lines expressing the mutated recombinant protein, BRI1(Y831F)-Flag, compared with those expressing BRI1-Flag. BRI1(Y831F)-Flag transgenic plants showed a reduction in hypocotyl and petiole length compared with BRI1-Flag seedlings. Transcriptome analysis revealed differential expression of flowering time-associated genes (AP1, AP2, AG, FLC, and SMZ) between BRI1(Y831F)-Flag and BRI1-Flag transgenic seedlings. We also performed site-directed mutagenesis of the BRI1 gene, and investigated the effect of methionine (Met) substitution in the extracellular domain (ECD) of BRI1 on plant growth and BR sensitivity by evaluating hypocotyl elongation and root growth inhibition. METHODS: The pBIB-Hyg+-pBR-BRI1-Flag construct(Li et al. 2002) was used as the template for SDM with QuickChange XL Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) to make the SDM mutants. After PCR with SDM kit, add 1 µl of Dpn1 to PCR reaction. Incubate at 37 °C for 2 h to digest parental DNA and then transformed into XL10-gold competent cells. Transcriptome analysis was carried out at the University of Illinois (Urbana-Champaign, Illinois, USA). RNA was prepared and hybridized to the Affymetrix GeneChip Arabidopsis ATH1 Genome Array using the Gene Chip Express Kit (Ambion, Austin, TX, USA). RESULTS: Tyrosine 831 autophosphorylation of BRI1 regulates Arabidopsis flowering time, and mutation of methionine residues in the extracellular domain of BRI1 affects hypocotyl and root length. BRI1(M656Q)-Flag, BRI1(M657Q)-Flag, and BRI1(M661Q)-Flag seedlings were insensitive to the BL treatment and showed no inhibition of root elongation. However, BRI1(M665Q)-Flag and BRI1(M671Q)-Flag seedlings were sensitive to the BL treatment, and exhibited root elongation inhibition. the early flowering phenotype of BRI1(Y831F)-Flag transgenic plants is consistent with the expression levels of key flowering-related genes, including those promoting flowering (AP1, AP2, and AG) and repressing flowering (FLC and SMZ).


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Metionina/genética , Metionina/metabolismo , Metionina/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Plântula/genética , Transdução de Sinais/genética , Tirosina/genética , Tirosina/metabolismo , Tirosina/farmacologia
4.
Entropy (Basel) ; 24(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205440

RESUMO

We studied the prisoner's dilemma game as applied to signed networks. In signed networks, there are two types of links: positive and negative. To establish a payoff matrix between players connected with a negative link, we multiplied the payoff matrix between players connected with a positive link by -1. To investigate the effect of negative links on cooperating behavior, we performed simulations for different negative link densities. When the negative link density is low, the density of the cooperator becomes zero because there is an increasing temptation payoff, b. Here, parameter b is the payoff received by the defector from playing the game with a cooperator. Conversely, when the negative link density is high, the cooperator density becomes almost 1 as b increases. This is because players with a negative link will suffer more payoff damage if they do not cooperate with each other. The negative link forces players to cooperate, so cooperating behavior is enhanced.

5.
Genes Genomics ; 43(11): 1269-1276, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34449065

RESUMO

BACKGROUND: Botrytis-induced Kinase 1 (BIK1) is a receptor-like cytoplasmic kinase (RLCK) involved in the defense, growth, and development of higher plants. It interacts with various receptor-like kinases (RLKs) such as Brassinosteroid Insensitive 1 (BRI1), Flagellin Sensitive 2 (FLS2), and Perception of the Arabidopsis Danger Signal Peptide 1 (PEPR1), but little is known about signaling downstream of BIK1. OBJECTIVE: In this study, we aimed to identify Arabidopsis thaliana BIK1 (AtBIK1) and Brassica rapa BIK1 (BrBIK1) interacting proteins, which is downstream signaling components in Arabidopsis. In addition, the effect of BIK1 phosphorylation on their interaction were examined. METHODS: For yeast two hybrid (Y2H) screening, a B. rapa cDNA activation domain (AD) library and an A. thaliana cDNA library were used. Reverse reaction (LR) recombinations of appropriate open reading frames (AtBIK1, BrBIK1, AtRGP2, AtPATL2, AtPP7) in either pDONR207 or pDONR/zeo were performed with the split-YFP destination vectors pDEST-GWVYNE and pDEST-GWVYCE to generate N- or C-terminal fusions with the N- and C-terminal yellow fluorescent protein (YFP) moieties, respectively. Recombined vectors were transformed into Agrobacterium strain GV3101. The described GST-AtBIK1, Flag-AtBIK1, and Flag-BrBIK1 constructs were used as templates for site-directed mutagenesis with a QuikChange XL Site-Directed Mutagenesis Kit (Stratagene). RESULTS: In results, A. thaliana BIK1 (AtBIK1) displays strong autophosphorylation kinase activity on tyrosine and threonine residues, whereas B. rapa BIK1 (BrBIK1) does not exhibit autophosphorylation kinase activity in vitro. Herein, we demonstrated that four proteins (RGP2, PATL2, PP7, and SULTR4.1) interact with BrBIK1 but not AtBIK1 in a Y2H system. To confirm interactions between BIK1 and protein candidates in Nicotiana benthamiana, BiFC analysis was performed and it was found that only BrBIK1 bound the three proteins tested. Three phosphosites, T90, T362, and T368, based on amino acid sequence alignment between AtBIK1 and BrBIK1, and performed site-directed mutagenesis (SDM) on AtBIK1 and BrBIK. S90T, P362T, and A369T mutations in BrBIK1 restored autophosphorylation kinase activity on threonine residues comparable to AtBIK1. However, T90A, T362P, and T368A mutations in AtBIK1 did not alter autophosphorylation kinase activity on threonine residues compared with wild-type AtBIK1. BiFC results showed that BIK1 mutations restored kinase activity led to the loss of the binding activity to RGP2, PATL2, or PP7 proteins. CONCLUSION: Phospho-BIK1 might be involved in plant innate immunity, while non-phospho BIK1 may regulate plant growth and development through interactions with RGP2, PATL2, and PP7.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Imunidade Inata , Fosforilação , Proteínas Quinases , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular
6.
Genes Genomics ; 42(8): 957-969, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32648234

RESUMO

BACKGROUND: Brassinosteroids (BRs) are a class of phytohormones with important roles in regulating physiological and developmental processes. Small RNAs, including small interfering RNAs and microRNAs (miRNAs), are non-protein coding RNAs that regulate gene expression at the transcriptional and post-transcriptional levels. However, the roles of small RNAs in BR response have not been studied well. OBJECTIVE: In this study, we aimed to identify BR-responsive small RNA clusters and miRNAs in Arabidopsis. In addition, the effect of BR-responsive small RNAs on their transcripts and target genes were examined. METHODS: Small RNA libraries were constructed from control and epibrassinolide-treated seedlings expressing wild-type BRI1-Flag protein under its native promoter in the bri1-5 mutant. After sequencing the small RNA libraries, differentially expressed small RNA clusters were identified by examining the expression levels of small RNAs in 100-nt bins of the Arabidopsis genome. To identify the BR-responsive miRNAs, the expression levels of all the annotated mature miRNAs, registered in miRBase, were analyzed. Previously published RNA-seq data were utilized to monitor the BR-responsive expression patterns of differentially expressed small RNA clusters and miRNA target genes. RESULTS: In results, 38 BR-responsive small RNA clusters, including 30 down-regulated and eight up-regulated clusters, were identified. These differentially expressed small RNA clusters were from miRNA loci, transposons, protein-coding genes, pseudogenes and others. Of these, a transgene, BRI1, accumulates small RNAs, which are not found in the wild type. Small RNAs in this transgene are up-regulated by BRs while BRI1 mRNA is down-regulated by BRs. By analyzing the expression patterns of mature miRNAs, we have identified BR-repressed miR398a-5p and BR-induced miR156g. Although miR398a-5p is down-regulated by BRs, its predicted targets were not responsive to BRs. However, SPL3, a target of BR-inducible miR156g, is down-regulated by BRs. CONCLUSION: BR-responsive small RNAs and miRNAs identified in this study will provide an insight into the role of small RNAs in BR responses in plants. Especially, we suggest that miR156g/SPL3 module might play a role in BR-mediated growth and development in Arabidopsis.


Assuntos
Arabidopsis/genética , Brassinosteroides/metabolismo , MicroRNAs/genética , RNA Interferente Pequeno/genética , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , MicroRNAs/isolamento & purificação , Reguladores de Crescimento de Plantas/metabolismo , RNA Interferente Pequeno/isolamento & purificação , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA